Synthesis of Natural Lentiginosine Employing a Cyclic Imide with C2-Symmetry Derived from L-Tartaric Acid

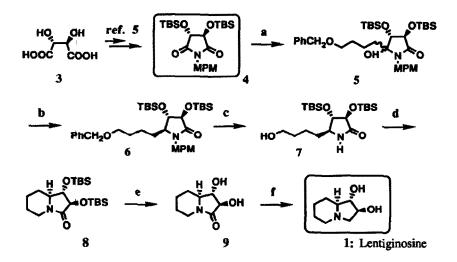
Hidemi Yoda,^{*} Hidekazu Kitayama, Takao Katagiri, and Kunihiko Takabe^{*}

Department of Applied Chemistry, Faculty of Engineering, Shizuoka University, Hamamatsu 432, Japan

(Received in Japan 7 April 1993)

Abstract: The first efficient and simple process is described for the synthesis of a new (15, 25, 8aS)-1,2-dihydroxyindolizidine alkaloid, lentiginosine. The synthetic strategy is based on asymmetric deoxygenation of the quarternary α -hydroxy lactam prepared from a C2-symmetrical imide derived from L-tartaric acid.

Lentiginosine (1), a *trans*-dihydroxyindolizidine alkaloid was first isolated from the spotted locoweed, Astragalus lentiginosus var. diphysus by Elbein et al. in 1990 and was indicated to be the first inhibitor of the fungal α -glucosidase, amyloglucosidase that has been found that has only two hydroxy groups.¹ Although the *cis*-diol (2) of the 2-epimer producing potent biologically active indolizidine alkaloids such as swainsonine and slaframine² has also been isolated³ and racemic^{3,4} and asymmetric enantiodivergent synthesis²a have been reported, the *cis*-compound as well as other dihydroxyindolizidines obtained from natural



1:
$$R^1 = OH$$
, $R^2 = H$
2: $R^1 = H$, $R^2 = OH$

sources exhibit no significant glycosidase inhibitory activity.¹ In addition, no procedure for the synthesis of *trans*-1 has so far appeared in spite of its simple structure.

Herein we wish to communicate the details of a synthetic strategy employing the method disclosed in the preceding report in which *trans*-selective asymmetric deoxygenation of quarternary α -hydroxy lactams is an essential step for introducing a stereogenic center bearing the alkyl side chain.

C₂-imide (4) with a *N*-*p*-methoxybenzyl group, obtained from L-tartaric acid (3) in 53% yield, was treated with Grignard reagent prepared from 1,4-butanediol to give the labile quarternary α -hydroxy lactam (5),⁵ which readily underwent to reductive deoxygenation with Et₃SiH in the presence of BF₃·OEt₂.⁶ The reaction proceeded smoothly at -78 °C to provide the homochiral lactam (6), $[\alpha]D^{22}+8.27(c 5.46, CHCl_3)$, with the desired stereochemistry (96.1 : 3.9 determined by HPLC using Daicel Chiralpak AS) *trans* with respect to the C-4 substituent.⁷ After successive removal of the protecting groups from 6 with CAN and Pd(black), product 7, $[\alpha]D^{23}+15.3(c 2.87, CHCl_3)$, thus obtained was mesylated and cyclized, leading to the bicyclic amide (8), $[\alpha]D^{23}+58.0(c 5.20, CHCl_3)$, in good yield. Treatment of 8 in acidic conditions resulted in the

Scheme 1. Reagents and Conditions: (a) $PhCH_2O(CH_2)_4MgBr$, THF, -78 - 0 °C; 85%; (b) Et_3SiH , $BF_3 \cdot OEt_2$, CH_2Cl_2 , -78 °C; 95%; (c) 1, $Ce(NH_4)_2(NO_3)_6$, CH_3CN-H_2O , 0 °C; 2, Pd(black), HCOOH, *i*-PrOH; 27% (2 steps); (d) 1, MsCl, Et_3N , CH_2Cl_2 ; 2, NaH, THF; 90% (2 steps); (e) HCl, MeOH; 100%; (f) $LiAlH_4$, THF, reflux; 100%.

preparation of 9, $[\alpha]_D^{22}+58.0(c\ 1.36, MeOH)$, which was finally reduced effectively with LiAIH4 in refuxing THF to complete the short and convenient total synthesis of lentiginosine (1), $[\alpha]_D^{23}+0.19(c\ 6.10, MeOH).^8$ The spectral data of the synthetic 1 were completely identical with those of reported natural compound¹ and homochiral 1 thus synthesized is determined with 92% de at the C-8a center based on the HPLC analysis (Daicel Chiralpak AS).

In summary, the first asymmetric synthesis of natural lentiginosine was established employing chiral C2imide (4) derived from L-tartaric acid as a key intermediate, which will furthermore serve for the synthesis of other natural products.

References and notes

- 1. Pastuszak, I.; Molyneux, R. J.; James, L. F.; Elbein, A. D. Biochemistry 1990, 29, 1886; Molyneux, R. J. J. Nat. Prod. 1990, 53, 609.
- (a) Heitz, M.-P.; Overmann, L. E. J. Org. Chem. 1989, 54, 2591 and references cited therein; (b) Harris, C. M.; Schneider, M. J.; Ungemach, F. S.; Hill, J. E.; Harris, T. M. J. Am. Chem. Soc. 1988, 110, 940.
- 3. Harris, T. M.; Harris, C. M.; Hill, J. E.; Ungemach, F. S. J. Org. Chem. 1987, 52, 3094.
- 4. Colegate, S. M.; Dorling, P. R.; Huxtable, C. R. Aust. J. Chem. 1984, 37, 1503.
- 5. Yoda, H.; Shirakawa, K.; Takabe, K. Chem. Lett. 1991, 489; Yoda, H.; Shirakawa, K.; Takabe, K. Tetrahedron Lett. 1991, 32, 3401.
- 6. See our preceding report.
- 7. The absolute configuration of the newly formed chiral center of 5 was determined based on the observed chemical sift and vicinal coupling constants (J_{4,5} and J_{5,6}) according to our preceding report; ¹H NMR data (CDCl₃, 90 MHz) for 5: δ -0.015 (3H, s), 0.069 (3H, s), 0.18 (3H, s), 0.21 (3H, s), 0.83 (9H, s), 0.92 (9H, s), 1.19-1.85 (6H, m), 3.11 (1H, dt, J_{4,5} = 1.8 Hz, J_{5,6} = 5.3 Hz), 3.44 (2H, t, J = 5.93 Hz), 3.75 (3H, s), 3.83 (1H, t, J = 1.98 Hz), 3.83 (1H, d, J = 14.9 Hz), 4.00 (1H, d, J = 1.97 Hz), 4.48 (2H, s), 5.00 (1H, d, J = 14.9 Hz), 6.80 (2H, d, J = 8.79 Hz), 7.13 (2H, d, J = 8.79 Hz), 7.31 (5H, s).
- 8. Lentiginosine extracted from natural sources¹ showed $[\alpha]_D^{24}$ -3.3(c 0.33, MeOH). The difference between natural and synthetic 1 in the specific rotation is due to the presence of its diastereomer in the product.